mirror of
https://github.com/google-deepmind/deepmind-research.git
synced 2025-12-06 09:02:05 +08:00
191 lines
7.4 KiB
Python
191 lines
7.4 KiB
Python
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""ResNetV2 (Pre-activation) with SkipInit."""
|
|
# pylint: disable=invalid-name
|
|
|
|
import haiku as hk
|
|
import jax
|
|
import jax.numpy as jnp
|
|
from nfnets import base
|
|
|
|
|
|
# Nonlinearities
|
|
nonlinearities = {
|
|
'swish': jax.nn.silu,
|
|
'relu': jax.nn.relu,
|
|
'identity': lambda x: x}
|
|
|
|
|
|
class SkipInit_ResNet(hk.Module):
|
|
"""Skip-Init based ResNet."""
|
|
|
|
variant_dict = {'ResNet50': {'depth': [3, 4, 6, 3]},
|
|
'ResNet101': {'depth': [3, 4, 23, 3]},
|
|
'ResNet152': {'depth': [3, 8, 36, 3]},
|
|
'ResNet200': {'depth': [3, 24, 36, 3]},
|
|
'ResNet288': {'depth': [24, 24, 24, 24]},
|
|
'ResNet600': {'depth': [50, 50, 50, 50]},
|
|
}
|
|
|
|
def __init__(self, num_classes, variant='ResNet50', width=4,
|
|
stochdepth_rate=0.1, drop_rate=None,
|
|
activation='relu', fc_init=jnp.zeros,
|
|
name='SkipInit_ResNet'):
|
|
super().__init__(name=name)
|
|
self.num_classes = num_classes
|
|
self.variant = variant
|
|
self.width = width
|
|
# Get variant info
|
|
block_params = self.variant_dict[self.variant]
|
|
self.width_pattern = [item * self.width for item in [64, 128, 256, 512]]
|
|
self.depth_pattern = block_params['depth']
|
|
self.activation = nonlinearities[activation]
|
|
if drop_rate is None:
|
|
self.drop_rate = block_params['drop_rate']
|
|
else:
|
|
self.drop_rate = drop_rate
|
|
self.which_conv = hk.Conv2D
|
|
# Stem
|
|
ch = int(16 * self.width)
|
|
self.initial_conv = self.which_conv(ch, kernel_shape=7, stride=2,
|
|
padding='SAME', with_bias=False,
|
|
name='initial_conv')
|
|
|
|
# Body
|
|
self.blocks = []
|
|
num_blocks = sum(self.depth_pattern)
|
|
index = 0 # Overall block index
|
|
block_args = (self.width_pattern, self.depth_pattern, [1, 2, 2, 2])
|
|
for block_width, stage_depth, stride in zip(*block_args):
|
|
for block_index in range(stage_depth):
|
|
# Block stochastic depth drop-rate
|
|
block_stochdepth_rate = stochdepth_rate * index / num_blocks
|
|
self.blocks += [NFResBlock(ch, block_width,
|
|
stride=stride if block_index == 0 else 1,
|
|
activation=self.activation,
|
|
which_conv=self.which_conv,
|
|
stochdepth_rate=block_stochdepth_rate,
|
|
)]
|
|
ch = block_width
|
|
index += 1
|
|
|
|
# Head
|
|
self.fc = hk.Linear(self.num_classes, w_init=fc_init, with_bias=True)
|
|
|
|
def __call__(self, x, is_training=True, return_metrics=False):
|
|
"""Return the output of the final layer without any [log-]softmax."""
|
|
# Stem
|
|
outputs = {}
|
|
out = self.initial_conv(x)
|
|
out = hk.max_pool(out, window_shape=(1, 3, 3, 1),
|
|
strides=(1, 2, 2, 1), padding='SAME')
|
|
if return_metrics:
|
|
outputs.update(base.signal_metrics(out, 0))
|
|
# Blocks
|
|
for i, block in enumerate(self.blocks):
|
|
out, res_avg_var = block(out, is_training=is_training)
|
|
if return_metrics:
|
|
outputs.update(base.signal_metrics(out, i + 1))
|
|
outputs[f'res_avg_var_{i}'] = res_avg_var
|
|
# Final-conv->activation, pool, dropout, classify
|
|
pool = jnp.mean(self.activation(out), [1, 2])
|
|
outputs['pool'] = pool
|
|
# Optionally apply dropout
|
|
if self.drop_rate > 0.0 and is_training:
|
|
pool = hk.dropout(hk.next_rng_key(), self.drop_rate, pool)
|
|
outputs['logits'] = self.fc(pool)
|
|
return outputs
|
|
|
|
def count_flops(self, h, w):
|
|
flops = []
|
|
flops += [base.count_conv_flops(3, self.initial_conv, h, w)]
|
|
h, w = h / 2, w / 2
|
|
# Body FLOPs
|
|
for block in self.blocks:
|
|
flops += [block.count_flops(h, w)]
|
|
if block.stride > 1:
|
|
h, w = h / block.stride, w / block.stride
|
|
# Count flops for classifier
|
|
flops += [self.blocks[-1].out_ch * self.fc.output_size]
|
|
return flops, sum(flops)
|
|
|
|
|
|
class NFResBlock(hk.Module):
|
|
"""Normalizer-Free pre-activation ResNet Block."""
|
|
|
|
def __init__(self, in_ch, out_ch, bottleneck_ratio=0.25,
|
|
kernel_size=3, stride=1,
|
|
which_conv=hk.Conv2D, activation=jax.nn.relu,
|
|
stochdepth_rate=None, name=None):
|
|
super().__init__(name=name)
|
|
self.in_ch, self.out_ch = in_ch, out_ch
|
|
self.kernel_size = kernel_size
|
|
self.activation = activation
|
|
# Bottleneck width
|
|
self.width = int(self.out_ch * bottleneck_ratio)
|
|
self.stride = stride
|
|
# Conv 0 (typically expansion conv)
|
|
self.conv0 = which_conv(self.width, kernel_shape=1, padding='SAME',
|
|
name='conv0')
|
|
# Grouped NxN conv
|
|
self.conv1 = which_conv(self.width, kernel_shape=kernel_size, stride=stride,
|
|
padding='SAME', name='conv1')
|
|
# Conv 2, typically projection conv
|
|
self.conv2 = which_conv(self.out_ch, kernel_shape=1, padding='SAME',
|
|
name='conv2')
|
|
# Use shortcut conv on channel change or downsample.
|
|
self.use_projection = stride > 1 or self.in_ch != self.out_ch
|
|
if self.use_projection:
|
|
self.conv_shortcut = which_conv(self.out_ch, kernel_shape=1,
|
|
stride=stride, padding='SAME',
|
|
name='conv_shortcut')
|
|
# Are we using stochastic depth?
|
|
self._has_stochdepth = (stochdepth_rate is not None and
|
|
stochdepth_rate > 0. and stochdepth_rate < 1.0)
|
|
if self._has_stochdepth:
|
|
self.stoch_depth = base.StochDepth(stochdepth_rate)
|
|
|
|
def __call__(self, x, is_training):
|
|
out = self.activation(x)
|
|
shortcut = x
|
|
if self.use_projection: # Downsample with conv1x1
|
|
shortcut = self.conv_shortcut(out)
|
|
out = self.conv0(out)
|
|
out = self.conv1(self.activation(out))
|
|
out = self.conv2(self.activation(out))
|
|
# Get average residual standard deviation for reporting metrics.
|
|
res_avg_var = jnp.mean(jnp.var(out, axis=[0, 1, 2]))
|
|
# Apply stochdepth if applicable.
|
|
if self._has_stochdepth:
|
|
out = self.stoch_depth(out, is_training)
|
|
# SkipInit Gain
|
|
out = out * hk.get_parameter('skip_gain', (), out.dtype, init=jnp.zeros)
|
|
return out + shortcut, res_avg_var
|
|
|
|
def count_flops(self, h, w):
|
|
# Count conv FLOPs based on input HW
|
|
expand_flops = base.count_conv_flops(self.in_ch, self.conv0, h, w)
|
|
# If block is strided we decrease resolution here.
|
|
dw_flops = base.count_conv_flops(self.width, self.conv1, h, w)
|
|
if self.stride > 1:
|
|
h, w = h / self.stride, w / self.stride
|
|
if self.use_projection:
|
|
sc_flops = base.count_conv_flops(self.in_ch, self.conv_shortcut, h, w)
|
|
else:
|
|
sc_flops = 0
|
|
# SE flops happen on avg-pooled activations
|
|
contract_flops = base.count_conv_flops(self.width, self.conv2, h, w)
|
|
return sum([expand_flops, dw_flops, contract_flops, sc_flops])
|