mirror of
https://github.com/google-deepmind/deepmind-research.git
synced 2025-12-06 17:18:46 +08:00
158 lines
5.0 KiB
Python
158 lines
5.0 KiB
Python
# Copyright 2021 DeepMind Technologies Limited.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS-IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Tests for combiners."""
|
|
|
|
import math
|
|
|
|
from absl.testing import absltest
|
|
from fusion_tcv import combiners
|
|
|
|
|
|
NAN = float("nan")
|
|
|
|
|
|
class CombinersTest(absltest.TestCase):
|
|
|
|
def assertNan(self, value):
|
|
self.assertLen(value, 1)
|
|
self.assertTrue(math.isnan(value[0]))
|
|
|
|
def test_errors(self):
|
|
c = combiners.Mean()
|
|
with self.assertRaises(ValueError):
|
|
c([0, 1], [1])
|
|
with self.assertRaises(ValueError):
|
|
c([0, 1], [1, 2, 3])
|
|
with self.assertRaises(ValueError):
|
|
c([0, 1], [-1, 2])
|
|
|
|
def test_mean(self):
|
|
c = combiners.Mean()
|
|
self.assertEqual(c([0, 2, 4]), [2])
|
|
self.assertEqual(c([0, 0.5, 1]), [0.5])
|
|
self.assertEqual(c([0, 0.5, 1], [0, 0, 1]), [1])
|
|
self.assertEqual(c([0, 1], [1, 3]), [0.75])
|
|
self.assertEqual(c([0, NAN], [1, 3]), [0])
|
|
self.assertNan(c([NAN, NAN], [1, 3]))
|
|
|
|
def test_geometric_mean(self):
|
|
c = combiners.GeometricMean()
|
|
self.assertEqual(c([0.5, 0]), [0])
|
|
self.assertEqual(c([0.3]), [0.3])
|
|
self.assertEqual(c([4, 4]), [4])
|
|
self.assertEqual(c([0.5, 0.5]), [0.5])
|
|
self.assertEqual(c([0.5, 0.5], [1, 3]), [0.5])
|
|
self.assertEqual(c([0.5, 1], [1, 2]), [0.5**(1/3)])
|
|
self.assertEqual(c([0.5, 1], [2, 1]), [0.5**(2/3)])
|
|
self.assertEqual(c([0.5, 0], [2, 0]), [0.5])
|
|
self.assertEqual(c([0.5, 0, 0], [2, 1, 0]), [0])
|
|
self.assertEqual(c([0.5, NAN, 0], [2, 1, 0]), [0.5])
|
|
self.assertNan(c([NAN, NAN], [1, 3]))
|
|
|
|
def test_multiply(self):
|
|
c = combiners.Multiply()
|
|
self.assertEqual(c([0.5, 0]), [0])
|
|
self.assertEqual(c([0.3]), [0.3])
|
|
self.assertEqual(c([0.5, 0.5]), [0.25])
|
|
self.assertEqual(c([0.5, 0.5], [1, 3]), [0.0625])
|
|
self.assertEqual(c([0.5, 1], [1, 2]), [0.5])
|
|
self.assertEqual(c([0.5, 1], [2, 1]), [0.25])
|
|
self.assertEqual(c([0.5, 0], [2, 0]), [0.25])
|
|
self.assertEqual(c([0.5, 0, 0], [2, 1, 0]), [0])
|
|
self.assertEqual(c([0.5, NAN], [1, 1]), [0.5])
|
|
self.assertNan(c([NAN, NAN], [1, 3]))
|
|
|
|
def test_min(self):
|
|
c = combiners.Min()
|
|
self.assertEqual(c([0, 1]), [0])
|
|
self.assertEqual(c([0.5, 1]), [0.5])
|
|
self.assertEqual(c([1, 0.75]), [0.75])
|
|
self.assertEqual(c([1, 3]), [1])
|
|
self.assertEqual(c([1, 1, 3], [0, 1, 1]), [1])
|
|
self.assertEqual(c([NAN, 3]), [3])
|
|
self.assertNan(c([NAN, NAN], [1, 3]))
|
|
|
|
def test_max(self):
|
|
c = combiners.Max()
|
|
self.assertEqual(c([0, 1]), [1])
|
|
self.assertEqual(c([0.5, 1]), [1])
|
|
self.assertEqual(c([1, 0.75]), [1])
|
|
self.assertEqual(c([1, 3]), [3])
|
|
self.assertEqual(c([1, 1, 3], [0, 1, 1]), [3])
|
|
self.assertEqual(c([NAN, 3]), [3])
|
|
self.assertNan(c([NAN, NAN], [1, 3]))
|
|
|
|
def test_lnorm(self):
|
|
c = combiners.LNorm(1)
|
|
self.assertEqual(c([0, 2, 4]), [2])
|
|
self.assertEqual(c([0, 0.5, 1]), [0.5])
|
|
self.assertEqual(c([3, 4]), [7 / 2])
|
|
self.assertEqual(c([0, 2, 4], [1, 1, 0]), [1])
|
|
self.assertEqual(c([0, 2, NAN]), [1])
|
|
self.assertNan(c([NAN, NAN], [1, 3]))
|
|
|
|
c = combiners.LNorm(1, normalized=False)
|
|
self.assertEqual(c([0, 2, 4]), [6])
|
|
self.assertEqual(c([0, 0.5, 1]), [1.5])
|
|
self.assertEqual(c([3, 4]), [7])
|
|
|
|
c = combiners.LNorm(2)
|
|
self.assertEqual(c([3, 4]), [5 / 2**0.5])
|
|
|
|
c = combiners.LNorm(2, normalized=False)
|
|
self.assertEqual(c([3, 4]), [5])
|
|
|
|
c = combiners.LNorm(math.inf)
|
|
self.assertAlmostEqual(c([3, 4])[0], 4)
|
|
|
|
c = combiners.LNorm(math.inf, normalized=False)
|
|
self.assertAlmostEqual(c([3, 4])[0], 4)
|
|
|
|
def test_smoothmax(self):
|
|
# Max
|
|
c = combiners.SmoothMax(math.inf)
|
|
self.assertEqual(c([0, 1]), [1])
|
|
self.assertEqual(c([0.5, 1]), [1])
|
|
self.assertEqual(c([1, 0.75]), [1])
|
|
self.assertEqual(c([1, 3]), [3])
|
|
|
|
# Smooth Max
|
|
c = combiners.SmoothMax(1)
|
|
self.assertAlmostEqual(c([0, 1])[0], 0.7310585786300049)
|
|
|
|
# Mean
|
|
c = combiners.SmoothMax(0)
|
|
self.assertEqual(c([0, 2, 4]), [2])
|
|
self.assertEqual(c([0, 0.5, 1]), [0.5])
|
|
self.assertEqual(c([0, 0.5, 1], [0, 0, 1]), [1])
|
|
self.assertEqual(c([0, 2, NAN]), [1])
|
|
self.assertEqual(c([0, 2, NAN], [0, 1, 1]), [2])
|
|
self.assertAlmostEqual(c([0, 1], [1, 3])[0], 0.75)
|
|
self.assertNan(c([NAN, NAN], [1, 3]))
|
|
|
|
# Smooth Min
|
|
c = combiners.SmoothMax(-1)
|
|
self.assertEqual(c([0, 1])[0], 0.2689414213699951)
|
|
|
|
# Min
|
|
c = combiners.SmoothMax(-math.inf)
|
|
self.assertEqual(c([0, 1]), [0])
|
|
self.assertEqual(c([0.5, 1]), [0.5])
|
|
self.assertEqual(c([1, 0.75]), [0.75])
|
|
self.assertEqual(c([1, 3]), [1])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
absltest.main()
|