# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ResNetV2 (Pre-activation) with SkipInit.""" # pylint: disable=invalid-name import haiku as hk import jax import jax.numpy as jnp from nfnets import base # Nonlinearities nonlinearities = { 'swish': jax.nn.silu, 'relu': jax.nn.relu, 'identity': lambda x: x} class SkipInit_ResNet(hk.Module): """Skip-Init based ResNet.""" variant_dict = {'ResNet50': {'depth': [3, 4, 6, 3]}, 'ResNet101': {'depth': [3, 4, 23, 3]}, 'ResNet152': {'depth': [3, 8, 36, 3]}, 'ResNet200': {'depth': [3, 24, 36, 3]}, 'ResNet288': {'depth': [24, 24, 24, 24]}, 'ResNet600': {'depth': [50, 50, 50, 50]}, } def __init__(self, num_classes, variant='ResNet50', width=4, stochdepth_rate=0.1, drop_rate=None, activation='relu', fc_init=jnp.zeros, name='SkipInit_ResNet'): super().__init__(name=name) self.num_classes = num_classes self.variant = variant self.width = width # Get variant info block_params = self.variant_dict[self.variant] self.width_pattern = [item * self.width for item in [64, 128, 256, 512]] self.depth_pattern = block_params['depth'] self.activation = nonlinearities[activation] if drop_rate is None: self.drop_rate = block_params['drop_rate'] else: self.drop_rate = drop_rate self.which_conv = hk.Conv2D # Stem ch = int(16 * self.width) self.initial_conv = self.which_conv(ch, kernel_shape=7, stride=2, padding='SAME', with_bias=False, name='initial_conv') # Body self.blocks = [] num_blocks = sum(self.depth_pattern) index = 0 # Overall block index block_args = (self.width_pattern, self.depth_pattern, [1, 2, 2, 2]) for block_width, stage_depth, stride in zip(*block_args): for block_index in range(stage_depth): # Block stochastic depth drop-rate block_stochdepth_rate = stochdepth_rate * index / num_blocks self.blocks += [NFResBlock(ch, block_width, stride=stride if block_index == 0 else 1, activation=self.activation, which_conv=self.which_conv, stochdepth_rate=block_stochdepth_rate, )] ch = block_width index += 1 # Head self.fc = hk.Linear(self.num_classes, w_init=fc_init, with_bias=True) def __call__(self, x, is_training=True, return_metrics=False): """Return the output of the final layer without any [log-]softmax.""" # Stem outputs = {} out = self.initial_conv(x) out = hk.max_pool(out, window_shape=(1, 3, 3, 1), strides=(1, 2, 2, 1), padding='SAME') if return_metrics: outputs.update(base.signal_metrics(out, 0)) # Blocks for i, block in enumerate(self.blocks): out, res_avg_var = block(out, is_training=is_training) if return_metrics: outputs.update(base.signal_metrics(out, i + 1)) outputs[f'res_avg_var_{i}'] = res_avg_var # Final-conv->activation, pool, dropout, classify pool = jnp.mean(self.activation(out), [1, 2]) outputs['pool'] = pool # Optionally apply dropout if self.drop_rate > 0.0 and is_training: pool = hk.dropout(hk.next_rng_key(), self.drop_rate, pool) outputs['logits'] = self.fc(pool) return outputs def count_flops(self, h, w): flops = [] flops += [base.count_conv_flops(3, self.initial_conv, h, w)] h, w = h / 2, w / 2 # Body FLOPs for block in self.blocks: flops += [block.count_flops(h, w)] if block.stride > 1: h, w = h / block.stride, w / block.stride # Head module FLOPs out_ch = self.blocks[-1].out_ch flops += [base.count_conv_flops(out_ch, self.final_conv, h, w)] # Count flops for classifier flops += [self.final_conv.output_channels * self.fc.output_size] return flops, sum(flops) class NFResBlock(hk.Module): """Normalizer-Free pre-activation ResNet Block.""" def __init__(self, in_ch, out_ch, bottleneck_ratio=0.25, kernel_size=3, stride=1, which_conv=hk.Conv2D, activation=jax.nn.relu, stochdepth_rate=None, name=None): super().__init__(name=name) self.in_ch, self.out_ch = in_ch, out_ch self.kernel_size = kernel_size self.activation = activation # Bottleneck width self.width = int(self.out_ch * bottleneck_ratio) self.stride = stride # Conv 0 (typically expansion conv) self.conv0 = which_conv(self.width, kernel_shape=1, padding='SAME', name='conv0') # Grouped NxN conv self.conv1 = which_conv(self.width, kernel_shape=kernel_size, stride=stride, padding='SAME', name='conv1') # Conv 2, typically projection conv self.conv2 = which_conv(self.out_ch, kernel_shape=1, padding='SAME', name='conv2') # Use shortcut conv on channel change or downsample. self.use_projection = stride > 1 or self.in_ch != self.out_ch if self.use_projection: self.conv_shortcut = which_conv(self.out_ch, kernel_shape=1, stride=stride, padding='SAME', name='conv_shortcut') # Are we using stochastic depth? self._has_stochdepth = (stochdepth_rate is not None and stochdepth_rate > 0. and stochdepth_rate < 1.0) if self._has_stochdepth: self.stoch_depth = base.StochDepth(stochdepth_rate) def __call__(self, x, is_training): out = self.activation(x) shortcut = x if self.use_projection: # Downsample with conv1x1 shortcut = self.conv_shortcut(out) out = self.conv0(out) out = self.conv1(self.activation(out)) out = self.conv2(self.activation(out)) # Get average residual standard deviation for reporting metrics. res_avg_var = jnp.mean(jnp.var(out, axis=[0, 1, 2])) # Apply stochdepth if applicable. if self._has_stochdepth: out = self.stoch_depth(out, is_training) # SkipInit Gain out = out * hk.get_parameter('skip_gain', (), out.dtype, init=jnp.zeros) return out + shortcut, res_avg_var def count_flops(self, h, w): # Count conv FLOPs based on input HW expand_flops = base.count_conv_flops(self.in_ch, self.conv0, h, w) # If block is strided we decrease resolution here. dw_flops = base.count_conv_flops(self.width, self.conv1, h, w) if self.stride > 1: h, w = h / self.stride, w / self.stride if self.use_projection: sc_flops = base.count_conv_flops(self.in_ch, self.conv_shortcut, h, w) else: sc_flops = 0 # SE flops happen on avg-pooled activations contract_flops = base.count_conv_flops(self.width, self.conv2, h, w) return sum([expand_flops, dw_flops, contract_flops, sc_flops])